Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            A<sc>bstract</sc> Perturbative calculations involving fermion loops in quantum field theories require tracing over Dirac matrices. A simple way to regulate the divergences that generically appear in these calculations is dimensional regularisation, which has the consequence of replacing 4-dimensional Dirac matrices withd-dimensional counterparts for arbitrary complex values ofd. In this work, a connection between traces ofd-dimensional Dirac matrices and computations of the Tutte polynomial of associated graphs is proven. The time complexity of computing Dirac traces is analysed by this connection, and improvements to algorithms for computing Dirac traces are proposed.more » « lessFree, publicly-accessible full text available May 28, 2026
- 
            Free, publicly-accessible full text available September 11, 2026
- 
            A<sc>bstract</sc> X-space schemes are gauge-invariant, regulator-independent renormalization schemes that are defined by requiring position-space correlation functions of gauge-invariant operators to be equal to their noninteracting values at particular kinematic points. These schemes can be used to nonperturbatively renormalize composite operators in Lattice Quantum Chromodynamics (LQCD), and by computing matching coefficients between theX-space scheme and$$ \overline{\textrm{MS}} $$ in the dimensionally-regulated continuum, matrix elements calculated with LQCD can be converted to$$ \overline{\textrm{MS}} $$ -renormalized matrix elements. UsingX-space schemes for Heavy Quark Effective Theory (HQET) operators has the additional benefit that appropriate ratios of position-space correlation functions cancel the power-divergent static-quark self-energy of Lattice HQET nonperturbatively. This work presents theO(αS) matching coefficients betweenX-space renormalized four-quark flavor-nonsinglet HQET operators relevant for the lifetimes of charm- and bottom-hadrons, and four-quark HQET operators relevant for mixing between neutral mesons containing a heavy quark, such asB−$$ \overline{B} $$ mixing.more » « less
- 
            A<sc>bstract</sc> Ab-initio simulations of multiple heavy quarks propagating in a Quark-Gluon Plasma are computationally difficult to perform due to the large dimension of the space of density matrices. This work develops machine learning algorithms to overcome this difficulty by approximating exact quantum states with neural network parametrisations, specifically Neural Density Operators. As a proof of principle demonstration in a QCD-like theory, the approach is applied to solve the Lindblad master equation in the 1 + 1d lattice Schwinger Model as an open quantum system. Neural Density Operators enable the study of in-medium dynamics on large lattice volumes, where multiple-string interactions and their effects on string-breaking and recombination phenomena can be studied. Thermal properties of the system at equilibrium can also be probed with these methods by variationally constructing the steady state of the Lindblad master equation. Scaling of this approach with system size is studied, and numerical demonstrations on up to 32 spatial lattice sites and with up to 3 interacting strings are performed.more » « less
- 
            ABSTRACT Supermassive black holes (SMBHs) are commonly found at the centres of most massive galaxies. Measuring SMBH mass is crucial for understanding the origin and evolution of SMBHs. Traditional approaches, on the other hand, necessitate the collection of spectroscopic data, which is costly. We present an algorithm that weighs SMBHs using quasar light time series information, including colours, multiband magnitudes, and the variability of the light curves, circumventing the need for expensive spectra. We train, validate, and test neural networks that directly learn from the Sloan Digital Sky Survey (SDSS) Stripe 82 light curves for a sample of 38 939 spectroscopically confirmed quasars to map out the non-linear encoding between SMBH mass and multiband optical light curves. We find a 1σ scatter of 0.37 dex between the predicted SMBH mass and the fiducial virial mass estimate based on SDSS single-epoch spectra, which is comparable to the systematic uncertainty in the virial mass estimate. Our results have direct implications for more efficient applications with future observations from the Vera C. Rubin Observatory. Our code, AGNet, is publicly available at https://github.com/snehjp2/AGNet.more » « less
- 
            The Event Horizon Telescope (EHT) recently released the first horizon-scale images of the black hole in M87. Combined with other astronomical data, these images constrain the mass and spin of the hole as well as the accretion rate and magnetic flux trapped on the hole. An important question for the EHT is how well key parameters, such as trapped magnetic flux and the associated disk models, can be extracted from present and future EHT VLBI data products. The process of modeling visibilities and analyzing them is complicated by the fact that the data are sparsely sampled in the Fourier domain while most of the theory/simulation is constructed in the image domain. Here we propose a data- driven approach to analyze complex visibilities and closure quantities for radio interferometric data with neural networks. Using mock interferometric data, we show that our neural networks are able to infer the accretion state as either high magnetic flux (MAD) or low magnetic flux (SANE), suggesting that it is possible to perform parameter extraction directly in the visibility domain without image reconstruction. We have applied VLBInet to real M87 EHT data taken on four di↵erent days in 2017 (April 5, 6, 10, 11), and our neural networks give a score prediction 0.52, 0.4, 0.43, 0.76 for each day, with an average score 0.53, which shows no significant indication for the data to lean toward either the MAD or SANE state.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available